|--|

CSH 402

First Semester M.Sc. Degree Examination, December 2018/January 2019 COMPUTER SCIENCE Algorithmics

Tim	e:	3 Hours Max. Marks : 7	'0
		Note : Answer any five full questions. All questions carry equal marks.	
1.	a)	Differentiate between BigO and Omega notation with example.	6
	b)	Design an algorithm to check whether all the elements in a given array is distinct or not. Derive its worst complexity.	8
2.	a)	Explain the properties of Heap data structure along with a diagram.	7
	b)	What is Hashing ? Explain double hashing with suitable example.	7
3.	a)	What is an AVL tree ? Explain about the different rotation patterns used to balance AVL tree.	7
	b)	Explain deletion operation of Binary Search Tree. Discuss the various cases.	7
4.	a)	Start with an empty Red-Black tree, insert the following keys in the given order :	
		40, 50, 70, 30, 42, 15, 20, 25. Draw figures depicting the tree immediately after each insertion and following the rebalancing.	8
	b)	Compare and contrast various balanced binary search trees.	6
5.	a)	State Job sequencing problem. Discuss how do you solve job sequencing problem using greedy approach.	7
	b)	Write a pseudo code using divide and conquer technique to perform merge sort for a given unsorted array of N numbers.	7
6.	a)	Solve subset sum problem for the set $s = \{3, 5, 6, 7\}$ and $d = 15$. Construct a state space tree.	7

P.T.O.

7

7

8

b) What is Dynamic Programming strategy ? Find the optimal solution for the 0/1 knapsack problem for the given set of items using dynamic programming approach.

Weight	Values
2	3
3	4
4	5
5	6

- 7. a) Explain Breadth First Traversal algorithm for graphs. Mention its applications.
 - b) Find the Optimal Binary Search Tree for the elements and frequencies given below.
 7

Element	12	15	20	25
Frequency	4	3	6	2

8. a) Define Minimum Spanning Tree (MST). Using Kruskal's algorithm, find the MST for given weighted graph.

- b) Write short notes on following :
 - i) Collision Resolution
 - ii) Biconnected Graphs.

6

CSH 402